If $\alpha ,\,\beta ,\,\gamma $ and $\delta $ are the solutions of the equation $\tan \left( {\theta  + \frac{\pi }{4}} \right) = 3\,\tan \,3\theta $ , no two of which have equal tangents, then the value of $tan\, \alpha  + tan\, \beta + tan\, \gamma + tan\, \delta $ is

  • A

    $1$

  • B

    $-1$

  • C

    $2$

  • D

    $0$

Similar Questions

Solve $\sin 2 x-\sin 4 x+\sin 6 x=0$

The general solution of $sin\, x + sin \,5x = sin\, 2x + sin \,4x$ is :

The number of solutions $x$ of the equation $\sin \left(x+x^2\right)-\sin \left(x^2\right)=\sin x$ in the interval $[2,3]$ is

  • [KVPY 2018]

Find the value of $\tan \frac{\pi}{8}$

$\cot \theta = \sin 2\theta (\theta \ne n\pi $, $n$ is integer), if $\theta = $