If $\alpha ,\,\beta ,\,\gamma $ and $\delta $ are the solutions of the equation $\tan \left( {\theta  + \frac{\pi }{4}} \right) = 3\,\tan \,3\theta $ , no two of which have equal tangents, then the value of $tan\, \alpha  + tan\, \beta + tan\, \gamma + tan\, \delta $ is

  • A

    $1$

  • B

    $-1$

  • C

    $2$

  • D

    $0$

Similar Questions

One root of the equation $\cos x - x + \frac{1}{2} = 0$ lies in the interval

The most general value of $\theta $ satisfying the equations $\sin \theta = \sin \alpha $ and $\cos \theta = \cos \alpha $ is

  • [IIT 1971]

Let $X=\{x \in R: \cos (\sin x)=\sin (\cos x)\} .$ The number of elements in $X$ is

  • [KVPY 2016]

If $\sin 2\theta = \cos \theta ,\,\,0 < \theta < \pi $, then the possible values of $\theta $ are

$sin^{2n}x + cos^{2n}x$ lies between